
AN ALGORITHM FOR ASSEMBLING OVERLAPPING
GRID SYSTEMS∗

N. ANDERS PETERSSON†

SIAM J. SCI. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 6, pp. 1995–2022

Abstract. A general purpose algorithm for assembling overlapping grid systems for solving
partial differential equations (PDEs) is described. The method combines and improves on the tech-
niques implemented in the codes Beggar, CMPGRD, DCF3D, and PEGSUS. The present algorithm,
which has been implemented for the two-dimensional case in the code Xcog, starts by calculating a
global definition of the boundary of the computational domain based on the location of the physical
boundaries in all component grids. The global boundary description is used to identify all grid points
outside of the computational domain. The remaining points are classified according to the priority
of the component grids in the overlapping grid. If the overlap between the components is sufficiently
large, all remaining points can either interpolate from an overlapping grid or be used to discretize the
PDE. The algorithm can therefore construct an overlapping grid for implicit (coupled) interpolation
in one pass and needs only to iterate to ensure explicit (decoupled) interpolation. If the algorithm
fails due to insufficient overlap between the components, the main parts of the grid will still be valid.
This enables the code to report inconsistent grid points to the user, to facilitate an improvement of
the input.

Discrepancies between the boundary representations where the grids overlap are handled by
a mismatch tolerance, which is estimated automatically. The interpolation data are corrected for
the boundary mismatch, and it is shown how the interpolation error in a thin boundary layer is
substantially reduced by this correction.

Key words. overlapping grid, overset grid, Chimera grid

AMS subject classification. 65M50

PII. S1064827597292917

1. Introduction. The overlapping grid method, also known as the Chimera
overset grid technique, provides a flexible and efficient spatial discretization procedure
for numerically solving a PDE on a general two- or three-dimensional domain. In this
paper, we discuss the construction of overlapping grids and present a new algorithm
for the grid assembly.

An overlapping grid consists of a number of component grids, where boundary-
fitted curvilinear components resolve the different details close to the boundary of
the computational domain and where the background grids, which are often Carte-
sian, cover the remaining parts of the domain; see Figure 1.1. Each component grid is
structured and can have three types of grid points: discretization, interpolation, and
hole points. The discretization points are used to discretize the PDE or the boundary
conditions; the interpolation points interpolate their solution value from the overlap-
ping component grid; and the hole points are disregarded during the discretization
of the PDE. The hole points are either outside of the computational domain or are
eliminated to reduce the total number of grid points in the overlapping grid.

An overlapping grid can be constructed from a set of component grids if they
overlap each other sufficiently and if the sides1 of the components that describe the
physical boundary are identified. The basic overlap algorithm, developed by Benek,

∗Received by the editors March 31, 1997; accepted for publication (in revised form) October 8,
1997; published electronically June 3, 1999.

http://www.siam.org/journals/sisc/20-6/29291.html
†Hydromechanics Division, Naval Architecture and Ocean Engineering, Chalmers University of

Technology, 412 96 Gothenburg, Sweden (andersp@na.chalmers.se).
1A side of a component grid is a grid surface in three dimensions and a grid line in two dimensions.

1995



1996 N. ANDERS PETERSSON

Fig. 1.1. A simple overlapping grid. The circles indicate interpolation points where the solution
value is interpolated from the overlapping component grid.

Steger, and Dougherty [2] and Kreiss [6], works well when each part of the boundary is
completely described by one side of one component grid, as in Figure 1.1. The method
consists of two major steps.

The first step is to detect all hole points outside of the computational domain,
and the second step is to find the grid points to interpolate from (the donor points)
for all interpolation points on the fringe of the hole. Since each part of the boundary
is completely described by one closed grid line, it is possible to use this grid line to de-
termine whether a point in the background grid is inside or outside the computational
domain.

It becomes harder to detect the hole points when more than one component grid
describes each part of the boundary of the computational domain, as in Figure 1.2.
In this case, there is no closed grid line that can be used to cut out holes from the
background grids. Furthermore, there can be a mismatch at the boundary where the
components overlap each other. This makes the definition of the boundary slightly
imprecise, which complicates the hole-cutting process since there is no unique defini-
tion of the extent of the computational domain close to the boundary in the overlap
region.

The boundary mismatch also hampers the selection of interpolation points and
donor points. When the surface is convex, it becomes difficult to select the right
donor points for interpolation points on physical boundaries, because they appear to
be slightly inside of the boundary in the donor grid. Also, when the surface is concave,
boundary interpolation points appear to be slightly outside of the boundary in the
donor grid, so the boundary mismatch can lead to the improper classification of those
interpolation points as hole points.

The mismatch is especially likely to happen on curved boundaries that are not very
well resolved by the grid, when the boundary is approximated by a linear interpolant
between the discrete grid points; see Figure 1.3. However, the mismatch can also occur



ASSEMBLING OVERLAPPING GRIDS 1997

Fig. 1.2. The boundary-fitted components in an overlapping grid around a NACA-66-006 airfoil.
Several components are used next to the airfoil to optimize the grid sizes by making the grid fine
only where the gradient of the solution is large.

Fig. 1.3. A mismatch between the representations of a physical boundary can occur on curved
boundaries. In this case, the circular boundary is approximated by a linear interpolant between the
discrete grid points.

when a smoother approximation of the boundary is used and if the representations of
the boundary are different in the grids that overlap each other.

The mismatch problem becomes more pronounced when the grid is very fine in
the direction normal to the boundary and when the grid cells have a large aspect ratio.
If the mismatch is of the same magnitude or larger than the grid size in the direction
normal to the physical boundary, the grid points on the physical boundary in one
component can be situated several cells inside or outside of the physical boundary in
the overlapping component. Hence, there can be a large error in interpolated solution



1998 N. ANDERS PETERSSON

Explicit interpolation

Implicit interpolation

Fig. 1.4. Explicit and implicit interpolations for a one-dimensional overlapping grid.

values if the solution has a boundary layer.
There are two additional practical complications related to making an overlapping

grid. First, it can be hard to a priori judge if the component grids overlap each other
sufficiently. Second, the user can make a mistake when labeling the physical sides of
the component grids, which can lead to an inconsistent definition of the boundary of
the computational domain. Creating an overlapping grid is therefore sometimes an
iterative process, where the component grids are changed by the user until a valid
overlapping grid can be formed. Hence, it is important that the overlap algorithm be
fast so that the turnaround time for the grid assembly is small. It is also desirable
that the overlap algorithm produce a helpful error message when it fails, to facilitate
an improvement of the input. We remark in passing that it is also important that
the overlap algorithm be fast during a moving grid simulation, where the overlap
information has to be updated at every time-step. However, moving grids will not be
discussed further in the present paper.

There are two different ways to interpolate in an overlapping grid; see Figure 1.4.
When the interpolation type is implicit, the solution values at the interpolation

points are coupled, because they interpolate from both discretization and interpolation
points in the donor grid. This makes the required overlap smaller compared to when
explicit interpolation is used, since in that case only discretization points are allowed to
be donor points. Explicit interpolation is sometimes preferred when a time-dependent
problem is solved on the overlapping grid, because it simplifies the solution procedure.
Explicit interpolation can also be used for elliptic problems, where it can be useful
in connection with domain decomposition techniques. Implicit interpolation is well
suited for solving elliptic equations by a direct method such as Gaussian elimination.
In this case the interpolation relations are additional linear equations that are solved
simultaneously with the discretized elliptic equation on each component grid. Implicit
interpolation can also be used to save grid points both for steady-state and time-
accurate simulations of time-dependent PDEs. However, in the latter case it becomes
necessary to solve a linear system of equations to update the solution values at all
interpolation points after each time-step.

The basic overlap algorithm must be refined to construct an optimal overlapping
grid, where the overlap is as small as possible. When the interpolation is implicit,
the component grids must overlap each other by at least half a grid cell (for linear or
quadratic interpolation). Furthermore, the required amount of overlap is independent
of the number of component grids that overlap each other. The situation is different



ASSEMBLING OVERLAPPING GRIDS 1999

for explicit interpolation. For instance, if the discretization and interpolation stencils
are three points wide in each grid direction, the amount of overlap must exceed 11

2
grid cells where two components overlap each other. Also, the overlap must be up to
three grid cells wide close to where more than two grids overlap each other.

1.1. Previous methods. A number of algorithms exists for constructing over-
lapping grids. The technique developed by Benek, Buning, and Steger [1] and Benek,
Steger, and Dougherty [2] has been implemented and developed further in the code
PEGSUS [17]. The algorithm begins by cutting out holes from grids where the grid
points are outside of the computational domain and proceeds by finding donor points
for the interpolation points, which are located on the fringes of the holes and on
interpolating sides of the component grids.

In order for the algorithm to cut the holes, the user must specify the hole-cutting
surface as well as the hole grid, i.e., the grid in which the hole should be made. The
hole-cutting surface can be either one or more grid surfaces, or one or more rectangular
boxes. Each grid point in the hole grid is checked to see if it is inside or outside of
the hole-cutting surface. When the hole-cutting surface is a collection of grid surfaces,
the algorithm traverses through every grid point on every grid surface and compares
the angle between the outwardly directed normal to the grid surface, and the vector
from the grid point on the surface to the grid point in the hole grid. This approach
requires the collection of grid surfaces to be convex, so holes with a concave boundary
must be decomposed into convex parts by the user before the algorithm is applied.

In PEGSUS, the location of physical surfaces is defined by linear interpolation
between the discrete grid points, which results in a mismatch problem. To remedy
the situation, Parks et al. [12] suggest that the interpolation points on the physi-
cal boundary be moved to coincide with the description of the discrete boundary of
the donor grid. Thereafter, either the grid points inside the surface are moved the
same distance or the corresponding component grids are regenerated using the new
boundary description. This straightforward approach requires the overlap along the
boundary to be sufficiently large to make the boundary interpolation decouple. Fur-
thermore, if the component grids are regenerated, the method adds an extra step to
the overlap algorithm.

A method related to PEGSUS was proposed by Meakin [9], where three improve-
ments to speed up the algorithm were introduced. First, hole-cutting surfaces are
defined by combinations of simple analytical shapes such as cylinders and spheres.
Although this imposes restrictions on the shape of the object to be gridded, it makes
it straightforward and inexpensive to determine whether a grid point in the major
grid is inside or outside of the hole-cutting surface. The second way to speed up the
grid generation process is by using inverse maps. These maps are Cartesian helper
grids that cover the curvilinear grids. The parameter coordinate of the curvilinear
grid is precomputed at each vertex of the Cartesian grid and is used for finding donor
cells for the interpolation points on the fringes of the holes. The third approach to
accelerate the overlap algorithm is to let the inverse maps move together with the
component grids during a rigid body motion. This enables the overlap information to
be quickly updated, which is advantageous during a moving grid computation. This
overlap algorithm is implemented in the code DCF3D.

A combination of the overlapping grid method and the patched multiblock ap-
proach, where the component grids have common internal boundaries, is used in the
technique developed by Maple and Belk [8]. In this method, there can be one or more
patched component grids within each superblock. The superblocks overlap each other



2000 N. ANDERS PETERSSON

and communicate through interpolation. Hence, the combined grid can be entirely
patched with only one superblock, or completely overlapping with one component per
superblock, or somewhere in between. A data structure based on a combination of oc-
trees and binary space partition (BSP)-trees is used for determining whether a point
is inside or outside of a superblock as well as for providing an initial approximation for
locating donor points. The algorithm uses all grid surfaces with solid boundary condi-
tion to cut holes. The hole points outside of the computational domain are identified
in a two-step mark and fill process, which requires the hole-cutting grid surfaces to
be closed, but allows very thin holes. After the holes have been made, the algorithm
compiles a list of potential donor points for each interpolation point on the fringes
of the holes. The algorithm locates the donor that is considered to give the best
interpolation, and if all candidates are unfit as donor points, the interpolation point
is reclassified into a hole point, and the fringe of the hole is moved. The selection of
interpolation and donor points is done iteratively, since there might be interpolation
points in other grids that used an interpolation point as a donor point before it was
reclassified into a hole point. This algorithm is implemented in a code called Beggar.

Similar to PEGSUS, the Beggar code uses a linear approximation of physical
boundaries between the discrete grid points in each component grid. To circumvent
the resulting mismatch problem, Noack and Belk [11] suggest that a global reference
geometry be used to define the location of the physical surface between the discrete
grid points. The error between the linear surface representation and the reference
geometry is calculated as a function of the surface coordinates. This error is accounted
for when donor points are selected and interpolation weights are computed. In their
implementation, a piecewise linear representation which includes all boundary grid
points in all components that are aligned with the same surface is used as the reference
geometry. In principle, a more accurate CAD-based description could be used instead.

To summarize, the basic approach of PEGSUS, DCF3D, and Beggar is to first
detect the hole points and then find donor points for the interpolation points on the
fringe of the hole and on interpolating sides of the component grids. Holes are made in
grids where they are outside of the hole-cutting surfaces, so optimal overlap or explicit
interpolation can be ensured only by placing those surfaces carefully. Furthermore,
both PEGSUS and DCF3D require rather detailed user input concerning where holes
should be cut from the component grids.

A more automatic method was developed by Chesshire and Henshaw [4] and
originally implemented in the Fortran code CMPGRD [3]. The current version of the
code is rewritten in C++ and is part of the Overture framework [5]. In this method,
the component grids are ordered by priority. The algorithm determines iteratively
where the holes should be made, based on where the physical boundary is located.
Furthermore, it constructs an optimal grid for implicit or explicit interpolation. The
complications resulting from boundary mismatch are mitigated by using a mapping
for each component grid to define the behavior of the grid in between the discrete
grid points. Discrepancies between the boundary representations where the mappings
overlap are handled by a user specified mismatch tolerance.

The algorithm in CMPGRD begins by traversing through all grid points situ-
ated on physical boundaries to mark the nearest neighboring grid points in all other
components as hole points. The classification of the remaining points is done iter-
atively. In each iteration, the algorithm passes sequentially through all grid points
in all component grids. For each grid point, it examines whether it can interpolate
from a grid with higher priority, be a discretization point, or interpolate from a lower
grid. If none of the above are possible, the grid point is labeled as a hole point. The



ASSEMBLING OVERLAPPING GRIDS 2001

algorithm iterates on the classification of all points until no more changes are made.
Since all points that are next to a physical boundary point in another grid are initially
marked as hole points, and since there cannot be a discretization point next to a hole
point, the holes will grow during the iteration to exclude all points that are outside of
the computational domain. Unnecessary interpolation points are then trimmed away
to produce an overlapping grid where the overlap between the components is as small
as possible.

Although the iterative approach in CMPGRD makes it possible to construct over-
lapping grids around very complicated objects, where the components may overlap
each other arbitrarily, the algorithm encounters difficulties if the overlap between two
component grids is too narrow or if the sides of the components that describe the phys-
ical boundary are incorrectly identified. In that case, the number of hole points will
increase during each iteration of the classification, resulting in an empty overlapping
grid where all grid points are labeled as hole points.

1.2. Outline of the present method. The present method, which has been
implemented for the two-dimensional case in the code Xcog [14], can be seen as a com-
bination of the two above approaches. Similar to PEGSUS, DCF3D, and Beggar, all
points that are outside of the computational domain are first marked as hole points.
The present method automatically computes a global definition of the boundary of
the computational domain based on the location of all physical boundaries in all com-
ponent grids. Hence, the user input is simpler compared to PEGSUS and DCF3D.
Furthermore, the global approach can handle boundaries that are described by several
overlapping components and does not require the sides with a solid boundary condi-
tion to form closed surfaces. Similar to CMPGRD, the boundary mismatch problem
is handled by using a mapping for each component grid together with a mismatch
tolerance, which in the present method is estimated automatically. In addition, the
present method compensates the interpolation data for the boundary mismatch.

After the identification of the hole points outside of the computational domain,
the algorithm in Xcog proceeds by classifying the remaining points according to the
CMPGRD method by ordering the components by priority. If the overlap between
the components is sufficiently large, all points remaining after the hole-cutting can
be used either to discretize the PDE or to interpolate from an overlapping grid.
Hence, only one sweep through all points is necessary to construct a grid with implicit
interpolation. An iterative reclassification of interpolation points and donor points
is applied if the interpolation needs to be explicit. Finally, the grid is trimmed to
change unnecessary interpolation points into discretization or hole points to produce
a grid with as little overlap as possible. In contrast to CMPGRD, most parts of the
overlapping grid will be valid even after the algorithm fails due to insufficient overlap
between the components. Any inconsistent grid points can therefore be reported to
the user, who can utilize this information to modify the component grids to improve
the situation.

The overlapping grid algorithm will be described for a two-dimensional domain
and a vertex centered discretization scheme, where the discrete solution values are
located at the grid points. While these assumptions make the presentation of the
algorithm simpler, they are not restrictions of the overlapping grid method.

The remainder of the paper is organized as follows. We discuss the boundary
specification in section 2 and the requirements on the grid points in an overlapping
grid in section 3. In section 4, we describe the algorithm for inverting general grid
mappings, which is used for finding donor points for the interpolation points. This is



2002 N. ANDERS PETERSSON

Fig. 2.1. The computational domain is determined by the physical boundaries and by the
position of the component grids relative to those boundaries. Here solid lines are physical boundaries,
dashed lines represent interpolation boundaries, and dotted lines indicate external boundaries.

followed by a presentation of the overlap algorithm in section 5, where each grid point
is classified as either a discretization, an interpolation, or a hole point. Finally, in
section 6 we consider the potential flow around a circular cylinder augmented by a thin
boundary layer. It is demonstrated how the interpolation error caused by boundary
mismatch can be substantially reduced by correcting the interpolation data.

2. Boundary specification. The overlap algorithm distinguishes between two
main types of boundary points in a component grid: physical and nonphysical. The
physical boundary points describe the boundary of the computational domain. for
example, in a fluid flow model all grid points on no-slip, slip, inflow, outflow, and
far-field boundaries are physical boundary points. The nonphysical points can be
interpolating or external. An interpolating boundary point lies inside another compo-
nent grid such that the solution value can be interpolated to that boundary, and an
external boundary point is situated outside of the computational domain; see Figure
2.1.

To properly cut holes in the component grids, we use a global description of
the boundary of the possibly multiply connected computational domain. The most
general way to specify the boundary would be to use a pointwise approach, where the
user would be able to input the type for each individual grid point on the boundary.
However, the amount of data would then be very large, and there would also be a
considerable risk of making input errors that could lead to an inconsistent definition
of the boundary. To simplify the input but still allow for flexibility, each side of
each component grid is labeled as either physical, mixed physical/interpolating, or
nonphysical. There can also be user specified external portions of physical and mixed
physical/interpolating boundaries.

The physical/interpolating boundary condition is used for inlet or outlet geome-
tries, where one component is sticking into another component, sometimes with the
corners rounded off by fillet grids. Each grid point on the physical/interpolating sides



ASSEMBLING OVERLAPPING GRIDS 2003

Fig. 2.2. The boundary grid points close to the trailing edge of the NACA-66-006 airfoil shown
in Figure 1.2.

that is outside of all other component grids is considered to be a physical point. These
sides can therefore not be used to cut holes in other component grids.

In practice, the boundary of the computational domain is identified by assigning
a curve label to the sides of the components that are aligned with the boundary. Sides
that are completely aligned with the boundary are given a positive curve label, and
sides that are partly on the boundary and partly inside of another component are
given a negative curve label. The absolute value of the curve label is the same for all
sides of all components that are aligned with the same part of the boundary. Hence,
if the domain is simply connected, only one curve label value is used. For a doubly
connected domain, two values are used, and so on. The external portion of a physical
or mixed physical/interpolating side is specified by giving the starting and ending
positions of the gap along the boundary.

The global boundary description is computed by sorting the physical points that
belong to the same part of the boundary, i.e., have the same absolute value of the curve
label. The polygon that joins the sorted points is used to represent the corresponding
part of the global boundary. By necessity, each polygon is closed, and it is determined
whether the computational domain is on the inside or the outside of the polygon by
checking on which side the corresponding component grids are situated.

Some care is required to properly sort the physical boundary points. For instance,
the straightforward approach to search for the closest neighbor breaks down for thin
bodies when the tangential distance between the points exceeds the thickness of the
body; cf. Figure 2.2. To avoid this problem, we treat the distances in the normal and
tangential directions differently. Let t be the tangent and n be the normal of the
boundary estimated by using the locations of the current and the previous points.
The next point is then selected as the point that has the smallest distance from the
current point xP according to the distance function

d(x) =


√

((x− xP ) · t/a)
2

+ ((x− xP ) · n)
2
, (x− xP ) · t ≥ 0,√

(a(x− xP ) · t)
2

+ ((x− xP ) · n)
2
, (x− xP ) · t < 0.

The coefficient a measures the importance of the tangential distance compared to
the normal distance. A value of a = 5 has proven to work well in practice. The case
with negative tangential distance is specially treated to avoid alternating direction at
the beginning of the polygon. However, it is necessary to account for points with a
negative tangential distance, for instance, at sharp corners where the tangent changes
direction by more than 90◦.

3. Requirements on the grid points in an overlapping grid. A grid point
is a valid discretization point if it is possible to set up the discretization stencil at



2004 N. ANDERS PETERSSON

Fig. 3.1. An interpolation point must be separated from nonphysical boundaries in the donor
grid, but is allowed to be close to a physical boundary if the interpolation point is close to a physical
boundary in its own component grid. Here, the interpolation points are marked with circles.

the point, that is, if there are no hole points in the stencil. The present algorithm
allows for different widths for interior, boundary, and corner discretization stencils.
Henceforth, we assume that the width of the interior stencil is DW ×DW , where DW

is odd and satisfies DW ≥ 3. This implies that each interior discretization point must
be separated from all hole points by at least one interpolation point.

For the interpolation points, which interpolate from an IW × IW stencil in the
donor grid, the algorithm must make sure that none of the donor points are hole points.
The width of the interpolation stencil is chosen based on the order of accuracy, the
type of PDE (elliptic, parabolic, hyperbolic, etc.), and by the behavior of the overlap
when the grid size decreases; see [4] for details. In the following, we will assume that
IW ≥ 2.

It is convenient to regard each component grid as a mapping from the unit square
in parameter space to the physical domain covered by the component grid. Hence, a
grid point is inside of the grid if and only if the corresponding parameter coordinate
is inside of the unit square in parameter space. We assume that the mapping for
each component grid is one-to-one and that the corresponding grid in parameter
space is Cartesian with constant step size. Note that if only the locations of the grid
points are known, the mapping can be approximated by interpolation between the grid
points to the required order of accuracy. In the following, we will denote a coordinate
in parameter space by r = (r, s) and a Cartesian coordinate in physical space by
x = (x, y). Furthermore, let the mapping for component grid k be x = X(k)(r), and
let it cover the domain x ∈ Ω(k).

Consider one grid point in component A with Cartesian coordinate xP that is
inside of donor grid B. By inverting the donor grid’s mapping function, we can com-
pute the donor parameter value rP : xP = X(B)(rP ). To prevent the overlap between
components A and B from becoming arbitrarily small, the point xP is considered to
be a valid interpolation point only if rP is at least max(0.5, 0.5(IW − 2)) grid cells
inside of all nonphysical boundary points in grid B. However, no overlap requirements
can be enforced in the direction normal to the boundary, close to physical boundary



ASSEMBLING OVERLAPPING GRIDS 2005

points, since we must allow two grids whose sides describe the same physical boundary
to interpolate from each other in the overlap region; see Figure 3.1.

The interpolation stencil is centered around rP in the parameter plane of the donor
grid B, unless rP is so close to a physical boundary that the centered interpolation
formula would use grid points outside of grid B. In that case, the interpolation stencil
is shifted to start at the physical boundary.

If rP is sufficiently far away from all nonphysical boundaries and there are no
hole points in the interpolation stencil, we say that the interpolation location is valid.

4. Inverting a component grid mapping. Let us consider inverting the map-
ping corresponding to a general curvilinear grid B in order to find donor points for
an interpolation point with Cartesian coordinate xP . Before we attempt to invert the
mapping, we must first determine if xP ∈ Ω(B), since the mapping might not be well
defined outside of that domain. If the point is inside of Ω(B), the second problem
is to generate a sufficiently good initial approximation for Newton’s method, which
converges only if the initial guess is sufficiently close to the solution.

4.1. Boundary mismatch. The inversion of a component grid mapping can
be complicated by mismatch close to a physical boundary. In the present method we
handle the mismatch problem by introducing a mismatch tolerance ε that is used in the
following way. During the search for donor points corresponding to an interpolation
point that is less than ε away from a physical boundary in its own component, we say
that the interpolation point is inside of the donor grid (for the purpose of interpolation)
if it is less than ε outside of the physical boundary in the donor grid. To avoid errors
in the interpolated solutions close to physical boundaries, we compensate for the
mismatch when the interpolation data is computed.

For simplicity, we use a global value of ε. It is desirable to keep ε as small as
possible because the overlap algorithm becomes slower for a larger ε, since more points
get specially treated by the search method. We therefore want to use the smallest ε
that enables all interpolation points close to a physical boundary in their own grid to
interpolate from the appropriate donor grid.

The required size of the mismatch tolerance is related to the smoothness of the
polygons that represent each part of the global boundary, because each polygon con-
tains points from all grids in an overlap domain. Let there be P parts of the global
boundary, and let the Cartesian coordinates of the sorted grid points of part p be

x
(p)
i = (x

(p)
i , y

(p)
i )T , i = 1, 2, . . . , Np. The mismatch tolerance is estimated by

ε = max
1≤p≤P

(
max

2≤i≤Np−1
|(x(p)

i+1 − x
(p)
i ) · n(p)

i |
)
,(4.1)

where the unit normal is given by

n
(p)
i =

1

|x(p)
i − x

(p)
i−1|

(
y

(p)
i − y(p)

i−1

−x(p)
i + x

(p)
i−1

)
.

4.2. Is a point inside a component grid?. To determine if a point with
Cartesian coordinate xP is inside a donor grid, we first check if the point is inside
of the approximative boundary consisting of the polygon that joins all boundary grid
points of the donor grid. This means that the polygonal approximation of the grid
boundary is slightly outside the true boundary when it is concave, and slightly inside
of the true boundary when it is convex. For points that are inside of the polygon



2006 N. ANDERS PETERSSON

but outside of the true boundary, the subsequent Newton iteration will converge to a
parameter coordinate that is outside of the unit square. If the boundary is physical,
it can be determined if the point is within the ε mismatch tolerance. If the boundary
is nonphysical, such a point is classified as being outside of the grid.

The situation is more complicated for points that are outside of the polygon, but
inside of the true boundary. When the point is close to nonphysical boundaries in the
donor grid or when the point is more than ε inside of all physical boundaries in its own
grid, the problem is not critical because in that case, xP is only slightly inside of the
donor grid. According to the requirements for interpolation points, the interpolation
location would then be invalid, at least if the gap between the true boundary and the
polygon is less than the required overlap.

If the point xP is outside of the polygon but within ε of a physical boundary
in its own component, we must allow interpolation to take place if xP is less than ε
away from a physical boundary in the donor grid. We check this condition by first
locating the boundary grid point that is closest to xP . The distance between xP
and the closest boundary grid point is decomposed into the normal and tangential
components relative to the boundary. If the normal distance is less than ε, we consider
the point xP to be sufficiently close to the boundary for boundary interpolation.

Our technique for checking if xP is inside a polygon is based on counting the
intersections between the polygon and a horizontal (constant y-coordinate) ray that
starts at xP and ends at infinity. For this purpose we apply Shimrat’s algorithm,
which is well known from computational geometry [10].

Algorithm 1. If

1. the y-coordinate of xP is greater than or equal to the minimum value and less
than the maximum value of the y-coordinates of two contiguous vertices of
the polygon, then

2. the x-coordinate of the point of intersection is found.

If this coordinate is less than the x-coordinate of point xP , it is counted; otherwise it
is not. The test is repeated for all contiguous pairs of vertices. An odd/even number
of counts means that xP is inside/outside the polygon.

Remark. The technique can be extended to three space dimensions.

Let the grid points of the donor grid have Cartesian coordinates xi,j , 1 ≤ i ≤ N ,

1 ≤ j ≤ M . We define a grid line Lc,da,b, where either a = b or c = d is the polygon
that connects the grid points xi,j with a ≤ i ≤ b and c ≤ j ≤ d. It can be verified
if a point xP is inside the polygonal approximation of the donor grid boundary, by
applying the above algorithm to the polygon consisting of the four grid lines L1,1

1,N ,

LM,M
1,N , L1,M

1,1 , and L1,M
N,N .

It is not necessary to traverse through all grid points on the boundary to count
the number of intersections with the ray. The number of operations can be reduced
by subdividing each side of each component grid in a binary tree structure; see Fig-
ure 4.1. Before the overlapping grid algorithm is started, the bounding box of the
(x, y) coordinates of the grid points in the subdivision is saved in each node of the
tree.

The ray can only intersect a subdivision of the boundary if it intersects the corre-
sponding bounding box, and the bounding box of each node in the tree contains the
union of the bounding boxes of the two subnodes. Hence, it is necessary to search
only for intersections in the subnodes whose bounding boxes intersect the ray. We
found by experiments that the highest efficiency occurred when each branch of the
tree was subdivided recursively until it contained less than five grid points.



ASSEMBLING OVERLAPPING GRIDS 2007

Fig. 4.1. The boundary of each component grid is subdivided in a binary tree structure to speed
up the counting of intersections between the ray and the boundary. Open circles indicate grid points
on the boundary and filled circles mark different locations of the grid point xP . Also shown are the
bounding boxes corresponding to three levels in the binary search tree.

The operational count is as follows. The least expensive case occurs when the ray
does not intersect the top level bounding box. This case requires onlyO(1) operations.
When the ray intersects the top level bounding box, it is likely to intersect only one of
the bounding boxes on each sublevel. There are O(log2N) levels on a boundary with
N grid points, so this case requires order O(log2N) operations. In the worst case
scenario, which is rather unlikely to happen, the boundary oscillates wildly and the
ray intersects every subdivision of the boundary. This leads to an operation count of
O(N). The total number of operations for determining if a point is inside a component
grid follows by summing the effort in counting the number of intersections with the
four bounding grid lines. If xP is inside the bounding box of the component grid,
the ray must intersect at least one of the top level bounding boxes. By the above
argument, the algorithm is most likely to require O(log2N + log2M) operations but
can, in rare difficult cases, take up to O(N +M) operations. We remark that further
improvements of the above algorithm are possible; see, for instance, Preparata and
Shamos [15].

4.3. Locating the enclosing grid cell. If the point xP is found to be inside the
grid, we need a good initial guess for Newton’s method. A straightforward exhaustive
search through all grid points could, for instance, be used to find the closest grid
point. However, this approach becomes prohibitively expensive for fine grids, because
the number of operations for the search is proportional to the number of grid points.
Instead, we apply a bisection technique to locate the enclosing grid cell.

We can assume that xP is inside the grid bounded by the four grid lines L1,1
1,N ,

LM,M
1,N , L1,M

1,1 , and L1,M
N,N . To more closely locate xP , we subdivide the grid along

the grid lines i = [(1 + N)/2] and j = [(1 + M)/2], which results in four subgrids.
By counting the number of intersections between the ray starting at xP and the



2008 N. ANDERS PETERSSON

Previous grid point

New grid point

Fig. 4.2. The subgrid is grown by a factor of two around the previous grid point until the new
grid point is enclosed by the subgrid. The subgrid is then shrunk until the enclosing grid cell for the
new grid point is located.

boundaries of the subgrids, we can determine in which subgrid xP is located. We
then repeat the procedure recursively until only one subgrid containing only one grid
cell remains. This determines in which grid cell the point xP is located.

Because the grid points are classified sequentially in the overlapping grid algo-
rithm, information about the previous grid point is often available. In this case, the
efficiency of the algorithm for locating the enclosing grid cell can be substantially
improved. Instead of starting the bisection at the boundary of the donor grid, we
then begin by growing a subgrid around the grid cell that enclosed the previous grid
point; see Figure 4.2.

We grow the size of the subgrid by a factor of two until the new point is enclosed.
The previous bisection technique is then applied to shrink the subgrid down to locate
the new enclosing grid cell. Naturally, the new grid point can sometimes be outside
of the previous donor grid. To incorporate this case into the algorithm, we limit the
growth to an 8× 8 subgrid. If the new grid point is outside of that subgrid, we treat
it as a grid point without an initial guess.

When there is an initial guess for the enclosing grid cell, the new enclosing grid cell
can be located in O(1) operations. In the absence of an initial guess, approximately
log2(max(N,M)) subdivisions of the grid are required to locate the grid cell Qi,j .
Also, O((N +M)/2q) operations are necessary to proceed from subdivision q to q+ 1
if we compute only subdivision information for the boundaries of the component grid.
Hence, the operational count becomes O(N +M) in the absence of an initial guess.

4.4. Applying Newton’s method. If the forward mapping is known explicitly,
Newton’s method can be applied to find the parameter coordinate rP corresponding
to xP by taking the initial guess to be the parameter value at the center of the
enclosing grid cell. When only the location of the grid points is known, it is necessary
to approximate the mapping locally by interpolation before the parameter coordinate



ASSEMBLING OVERLAPPING GRIDS 2009

rP can be computed. It is consistent to approximate the mapping by a Lagrangian
interpolation formula of the same width as when the solution value is interpolated,
because both interpolations lead to errors that are of the same order of magnitude.
When IW is even, the enclosing grid cell uniquely determines the location of the
interpolation stencil. Also, when IW is odd we increase the width of the interpolation
stencil for the mapping by one to make it even. This is harmless, since it only makes
the interpolation of the mapping more accurate. Hence, the interpolation formula
is always centered around the enclosing grid cell unless a grid boundary forces the
interpolation stencil to be skewed. Once the location of the interpolation stencil has
been determined, the Lagrangian interpolant is inverted by a Newton iteration to
approximate the parameter value rP corresponding to xP .

5. Classifying the grid points. Let the overlapping grid have G component
grids, where component k has Nk ×Mk grid points. The classification of each grid
point (i, j) in each component grid k will be stored in the flag array according to

flag(i, j, k) =

 k, discretization point,
−q, interpolation point, interpolating from grid q,

0, hole point.
(5.1)

To determine which component grid to prefer when there are two or more grids
that overlap each other, the component grids are ordered with respect to their priority
such that grid k has priority k. When there is a choice of which grid points to use in
the overlap domain, the basic strategy of the overlapping grid algorithm is to prefer
grid points from component grids with higher priority.

We proceed by describing the seven steps that constitute the classification al-
gorithm: hole-cutting, mixed boundary preparation, main classification, boundary
mismatch correction, explicit interpolation, consistency check, and trimming. Paral-
lel to the description of the algorithm, we show the result of the different steps for
the grid around the NACA-66-006 airfoil in Figure 5.1, which is designed for a fluid
flow computation.

In this example the airfoil is described by several components aligned with the
body, such that the resolution reflects the curvature of the boundary. The far field is
discretized by several Cartesian grids that are fine where the gradient of the velocity
field is expected to be large. The airfoil is enclosed in a curved channel to demonstrate
how mixed physical/interpolating boundaries are handled.

Hole-cutting. The grid points outside of the computational domain are identified
in a two-step process related to the technique described by Maple and Belk [8]. We
first traverse through all parts of the global boundary to locate all grid cells in all
component grids that are intersected by the boundary. We apply the technique de-
scribed in section 4.2 to determine if each point in the intersected cells is inside or
outside of the computational domain by checking each part of the global boundary.
Observe that a point is inside only if it is inside relative to all parts of the global
boundary. In this way, the points in the intersected cells that are outside of the global
boundary are flagged as H-points, while the remaining points in these cells are labeled
as G-points. (This notation is not related to (5.1).) We remark that if a part of the
global boundary intersects a cell that is less than ε inside of a physical boundary
that belongs to the same part of the global boundary, all grid points in this cell are
labeled as G-points. This is done to prevent two overlapping grids, that describe the
same physical boundary, from cutting holes in each other in the overlap region. After
all parts of the global boundary have been scanned, we identify the hole points by



2010 N. ANDERS PETERSSON

y

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 5.1. The outline of the components in the airfoil grid. Both parts of the physical boundary
are drawn with thick lines, and the thick dashed lines indicate mixed physical/interpolating sides.

starting from the H-points and proceeding along the grid lines in both grid directions.
The locations of the G-points next to each H-point define in which direction the hole
is situated. The hole extends to the next G-point along the grid line, or until the grid
line ends. The result of the hole-cutting is saved in the flag array according to

flag(i, j, k) =

{
1, if grid point (i, j) in grid k is inside,
0, otherwise.

The outcome of the hole-cutting algorithm for the airfoil grid is shown in Fig-
ure 5.2.

Mixed boundary preparation. To correctly identify interpolation points on a mixed
interpolating/physical boundary during the main classification algorithm, we go through
all grid points on those boundaries and mark the grid points that are sufficiently far
inside of another component grid as interpolation boundary points. By sufficiently
far inside, we mean at least max(0.5, 0.5(IW − 2)) grid cells from the boundary of
the donor grid, so that the interpolation location is valid. The grid points on the
mixed boundary that are not interpolation boundary points are marked as physical
boundary points.

Main classification. To more easily present the details of the main classification
algorithm, we introduce three functions that implement the rules for discretization
and interpolation points described in section 3. Note that we ensure only implicit
interpolation at this point.
interp from higher(x, k) Check if a grid point with Cartesian coordinate x can be

an interpolation point that interpolates from a donor grid with priority higher
than k. Return the priority of the highest such donor grid or, if x could not
interpolate from a higher grid, return zero.



ASSEMBLING OVERLAPPING GRIDS 2011

y

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 5.2. The airfoil grid after all points outside of the computational domain have been re-
moved. The four vertical lines through the airfoil connect contiguous grid points in the coarsest
Cartesian background grid which are inside of the computational domain.

interp from lower(x, k) Proceed as above, but restrict the search to donor grids
with priority less than k.

discretization point(i, j, k) Return TRUE if it is possible to set up the discretiza-
tion stencil at grid point (i, j) in grid k. Otherwise return FALSE.

Pseudo-C-code for the main classification algorithm is presented in Figure 5.3. For
each grid point that is not already a hole point, we first investigate if it can interpolate
from a grid with higher priority. If this is not possible, we determine if it is a valid
discretization point, and if it is not, we instead check if it can interpolate from a lower
grid. If it cannot interpolate from a lower grid, the grid point is flagged to be a hole
point. The airfoil grid after the main classification is presented in Figure 5.4.

The reason why the main classification can be done in one sweep is that, if the
overlap is sufficiently large for implicit interpolation, no points will be classified as hole
points during this step. All points that remain after the hole-cutting will therefore be
available as donor points. Because only implicit interpolation is ensured at this point,
it does not matter if the donor points are discretization points or interpolation points.
As long as no point is classified as a hole point, the final result of the main classification
is therefore not affected by the order in which the grid points are traversed. The only
essential ordering is the priority among the component grids.

After the main classification, the overlapping grid has implicit interpolation and
unnecessarily many interpolation points in the overlap regions. These deficiencies will
be taken care of in the steps to follow.

Boundary mismatch correction. For every interpolation point that is also a phys-
ical boundary point, we compute the distance ∆x between the interpolation point
and the boundary of the donor grid, normal to the boundary. Let one boundary in-



2012 N. ANDERS PETERSSON

for k = G,G− 1, . . . , 1
for i = 1, 2, . . . , Nk

for j = 1, 2, . . . ,Mk

/* Do not alter the points that were classified as hole points in the previous steps. */
if flag(i, j, k) 6= 0 then

interpolee = interp from higher(x
(k)
i,j , k);

if interpolee 6= 0 then
flag(i, j, k) = interpolee;

else if discretization point(i, j, k) then
flag(i, j, k) = k;

else

flag(i, j, k) = interp from lower(x
(k)
i,j , k);

end if
end if

end for
end for

end for

Fig. 5.3. Main classification algorithm in pseudo-C-code.

y

x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

Fig. 5.4. A closeup of the airfoil grid in the vicinity of the upper side of the airfoil, after a
successful main classification. Each interpolation point is marked with a circle.

terpolation point have the Cartesian coordinate xP . To compensate for the boundary
mismatch we recompute the interpolation location and the donor parameter value
by inverting the mapping for the donor grid with the modified coordinate xP −∆x.
Since the mismatch can be larger than the grid size normal to the boundary, it is



ASSEMBLING OVERLAPPING GRIDS 2013

for k = G,G− 1, . . . , 1

for this interp point = each interpolation point in grid k
donor grid = donor grid for this interp point;
do

new donor = FALSE; implicit = FALSE;
for (i, j) = index of each donor point for this interp point

/* Check if this interpolation is implicit, i.e., if the donor point is an
interpolation point. */

if flag(i, j, donor grid) 6= donor grid

then
/* Check if the donor point can be a discretization point instead. */

if (not implicit) and discretization point(i, j, donor grid)
then

flag(i, j, donor grid) = donor grid;
else

implicit = TRUE;
end if

end if
end for

/* The interpolation point is still implicit. */
if implicit then

(i, j) = index of this interp point;
/* Try to find a donor grid with a lower priority. */

donor grid = interp from lower(x
(k)
i,j , donor grid);

/* Try to reclassify the interpolation point (i, j) into a discretization point. */
if donor grid < k and discretization point(i, j, k) then

flag(i, j, k) = k;
else if donor grid > 0 then

flag(i, j, k) = donor grid;
new donor = TRUE;

end if
end if

/* Check the new donor points for implicit interpolation. */
while (new donor);

end for

end for

Fig. 5.5. Pseudo-C-code for removing implicit interpolation points.

necessary to correct the interpolation data for more interpolation points than those
on the boundary itself. We therefore recompute the interpolation location and the
donor parameter value in a corresponding way for all interpolation points along the
grid line that starts at xP and tends to the computational domain. Note that the
Cartesian coordinates of the interpolation points are not modified by this procedure,
so the smoothness of the grid is not affected. The importance of the mismatch cor-
rection is demonstrated by a separate example in section 6.

We remark that the correction method must be improved to handle the case



2014 N. ANDERS PETERSSON

when a component grid has two physical boundaries on opposite sides, as in Fig-
ure 3.1. In this case, the corrections from the two sides could be reconciled according
to ∆x(t) = (1 − t)∆x0 + t∆x1, where t is the normalized arclength along the grid
line and ∆xk, k = 0, 1, are the corrections at each end of the grid line. Another situ-
ation where the correction method must be improved occurs when the interpolation
points do not belong to the same grid line. This could, for instance, happen when the
boundary-fitted components are nonorthogonal. The correction ∆x would then have
to be different for each grid line, but could be computed by following the grid line to
the physical boundary and proceeding as before.

Explicit interpolation. The next step is to eliminate any implicit interpolations,
so this step is disregarded if the interpolation type is implicit. We present the algo-
rithm in pseudo-C-code in Figure 5.5. We start with the highest grid and proceed in
decreasing priority order such that fewer restrictions are enforced on the higher grids.
For each interpolation point, we determine if the interpolation is implicit or explicit
by checking if any of the donor points are interpolation points in the donor grid. If
the interpolation is explicit, we proceed to the next interpolation point. Otherwise, we
first try to reclassify the donor points that are interpolation points in the donor grid.
If all these donor points can be reclassified to be discretization points in the donor
grid, the interpolation point becomes explicit, and we proceed to the next interpo-
lation point. However, if it is not possible to reclassify all of them, the interpolation
point is flagged as an implicit point. In this case, the algorithm continues by first
investigating if the interpolation point can interpolate from a donor grid with higher
priority than that of the interpolation point’s grid, but lower than the present donor
grid. If this fails, we check if it can be a discretization point. If this is not the case,
we instead attempt to have the interpolation point interpolate from a donor grid with
lower priority than that of the interpolation point’s grid. Finally, if not even this can
be done, the implicit interpolation is impossible to make explicit. Observe that if the
interpolation point was assigned to interpolate from a new donor grid, it is necessary
to reiterate and check if the new donor points cause the interpolation to be implicit.

The airfoil grid after the explicit step is presented in Figure 5.6.

Consistency check. At this point, it is appropriate to check if the classification of
the grid points is consistent, i.e., if all discretization and interpolation points satisfy
the necessary requirements. For example, the overlapping grid might not be consistent
where two very coarse grids overlap each other. The consistency step will mark all
points that fail to satisfy the requirements and will label them according to the rule
they fail to fulfill.

To show what happens if there are too few points in the overlap region, we made
the inner Cartesian grid around the wing coarser and made the boundary-fitted grid on
the upper side of the wing thinner. The graphical representation of the error message
is shown in Figure 5.7.

If the overlapping grid is found to be consistent, we proceed to the next step,
where all unnecessary interpolation points in the overlap regions are trimmed away.

Trimming. The philosophy behind the trimming step is to minimize the number
of interpolation and discretization points in the overlapping grid. We will therefore
aim at reclassifying interpolation points into hole points. The trimming algorithm
employed here is very similar to the trimming step in the method by Chesshire and
Henshaw [4].

When the interpolation type is implicit, before the trimming step we must inspect
each interpolation point in each grid to check if its donor grid has lower priority than



ASSEMBLING OVERLAPPING GRIDS 2015

y

x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

Fig. 5.6. A closeup of the grid in the vicinity of the upper side of the airfoil, after the explicit
step has been performed. Each interpolation point is marked with a circle. Note that there are fewer
interpolation points in this grid than in Figure 5.4.

y

x

-0.15

-0.10

-0.05

0

0.05

0.10

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Fig. 5.7. A closeup of the airfoil after an unsuccessful main classification. Bad discretization
points are marked with boxes, and hole points that are used as donor points are labeled with crosses.
Triangles indicate bad interpolation points because of a hole point among the donor points.



2016 N. ANDERS PETERSSON

for k = 1, 2, . . . , G

for this interp point = each interpolation point in grid k
(i, j) = index of this interp point;
if interp type == explicit or not marked(i, j, k) then

if not needed by disc(i, j, k) and not needed by interp(i, j, k) then
flag(i, j, k) = 0;

end if
end if

end for

for (i, j) = index of each interpolation point in grid k
if discretization point(i, j, k) then

flag(i, j, k) = k;
end if

end for

if interp type == implicit then
for this interp point = each interpolation point in grid k

if donor grid(this interp point) > k then
for (i, j) = index of each donor point for this interp point;

marked(i, j, donor grid) = TRUE;
end for

end if
end for

end if

end for

Fig. 5.8. Pseudo-C-code for the trimming algorithm.

the priority of the interpolation point’s grid. In that case we mark the corresponding
donor points to make sure that they are not removed during the trimming algorithm.
When the interpolation type is explicit, all points can be regarded as unmarked, since
the trimming step reclassifies only interpolation points and we know that all donor
points are discretization points when the interpolation type is explicit.

To better describe the trimming algorithm, we introduce two functions that will
be used in the following pseudocode.

needed by disc(i, j, k) Return TRUE if the interpolation point (i, j) in grid k is
needed by a discretization point in grid k. Otherwise return FALSE. There
are three kinds of discretization points, so it is necessary to check if the point
(i, j) is needed by any interior, boundary, or corner points.

needed by interp(i, j, k) Return TRUE if the interpolation point (i, j) in grid k is
a donor point for any interpolation point in another grid. Otherwise return
FALSE.

The trimming algorithm (see Figure 5.8) starts at the component grid with the
lowest priority and proceeds to the component grid with the highest priority. The
list of interpolation points for each grid is traversed three times. During the first ex-
amination, each unmarked interpolation point is checked. If the present interpolation



ASSEMBLING OVERLAPPING GRIDS 2017

y

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 5.9. The finished overlapping grid with implicit interpolation. Each interpolation point is
marked with a circle.

point is not needed by either a discretization point or another interpolation point,
the interpolation point is reclassified to be a hole point. The interpolation points in
the present grid are then traversed again. This time we attempt to reclassify all un-
marked interpolation points into valid discretization points. During the third and last
inspection of the interpolation points, which is done only when the interpolation type
is implicit, we mark all donor points if the donor grid has higher priority than the
present grid. The purpose of the marking is to make sure that the donor points are
not removed when the grids with higher priority are trimmed. The marking is not
necessary if the interpolation type is explicit, because in that case, the donor points
cannot be interpolation points.

The trimming step completes the overlap algorithm. We present the finished over-
lapping grid for implicit interpolation in Figure 5.9.

We remark that it is easy to change the trimming algorithm to produce a grid
where the size of the overlap is essentially independent of the grid size. To achieve this,
we would need only to do the first two substeps of the trimming algorithm in reversed
order, i.e., first reclassify as many interpolation points as possible to be discretization
points, and thereafter remove the interpolation points that were not needed.

Performance. To indicate the CPU-time requirements of the algorithm, we per-
formed some timings. We used the airfoil grid shown above, and a refined grid, where
the number of grid points in each grid direction was increased by approximately 50%.
The time requirement for ensuring explicit interpolation is comparable to the more in-
volved trimming algorithm for implicit interpolation, so the two types of interpolation
require about the same amount of CPU-time. The timings are presented in Table 5.1
and were made with Xcog version 2.0 compiled with optimization and executed on a
DEC-α station 200 with 64 Mbyte of RAM.



2018 N. ANDERS PETERSSON

Table 5.1
The CPU-time requirements in seconds to calculate the overlapping grid shown in Figure 5.9

(which has 7265 grid points), and a refined version of the grid. The columns refer to implicit and
explicit interpolation types.

# grid points Implicit Explicit
7265 1.8 1.8

16312 4.0 4.1

-2.0 -1.5 -1.0 -0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0 1.85442

1.73079

1.60716

1.48354

1.35991

1.23628

1.11265

0.989024

0.865396

0.741768

0.61814

0.494512

0.370884

0.247256

0.123628

Fig. 6.1. The magnitude of the velocity (
√
u2 + v2) for potential flow with a boundary layer at

Reynolds number 105. The free stream velocity is one, directed to the right, and the boundary layer
thickness is approximately 10−2.

This example indicates that the CPU-time usage of the algorithm is of the order
of the total number of grid points.

6. Boundary interpolation. To investigate the quality of interpolation in a
boundary layer, we consider the two-dimensional potential flow around a circular
cylinder with radius one, augmented by a boundary layer. When the free stream
velocity equals one and is directed in the positive x-direction, and when the circulation
is zero, the velocity field according to potential flow theory satisfies (cf. [18])

u(x, y) = 1− x2 − y2

(x2 + y2)2
,(6.1)

v(x, y) = − 2xy

(x2 + y2)2
.(6.2)

In the boundary layer close to the boundary of the cylinder, the tangential velocity
component is modified according to boundary layer theory. For simplicity, we will use



ASSEMBLING OVERLAPPING GRIDS 2019

y

x
0.662

0.664

0.666

0.668

0.670

0.672

0.674

0.676

0.678

0.680

0.682

0.684

0.686

-0.760 -0.755 -0.750 -0.745 -0.740 -0.735 -0.730

Fig. 6.2. The mismatch at the boundary for the overlapping grid used for the boundary inter-
polation test. Interpolation points are marked with circles.

Fig. 6.3. The magnitude of the velocity (
√
u2 + v2) for potential flow with a Blasius boundary

layer at Reynolds number 105, along the interpolation grid line in Figure 6.2. The solid line repre-
sents the profile when straightforward interpolation is used and the dashed line corresponds to the
profile when the interpolation weights and locations are corrected to account for the mismatch. The
corrected and analytical profiles are indistinguishable from each other in this plot.



2020 N. ANDERS PETERSSON

-2.0 -1.5 -1.0 -0.5 0.0
0.0

0.5

1.0

1.5

2.0

Fig. 6.4. The overlapping grid used for the boundary interpolation test.

the profiles provided by Schlichting [16, p. 171], which were calculated by the Blasius
series method. The thickness of the boundary layer is proportional to 1/

√
Re, where

Re is the Reynolds number based on the diameter of the cylinder. The magnitude of
the velocity field for the case Re = 105 is presented in Figure 6.1. For this Reynolds
number, the boundary layer thickness is approximately 10−2.

Let us consider the grid in Figure 6.4. The grid sizes are chosen to reflect the
variation of the velocity field. The boundary-fitted grids are stretched in the normal
direction and have approximately 10 grid points in the boundary layer. The mappings
corresponding to the boundary-fitted grids are defined by bilinear interpolation in
between the discrete grid points, and the resulting mismatch in the overlap domain
at the boundary is shown in Figure 6.2.

To evaluate the quality of the boundary interpolation, we assign the discretization
points in the overlapping grid the velocity field (6.1), (6.2) modified by the boundary
layer profile. Thereafter, the velocities at the interpolation points are calculated by
biquadratic interpolation from the corresponding donor points. In Figure 6.3, we show
the velocity profile along one interpolation grid line, both for standard and corrected
interpolation. In this case, the mismatch corresponds to approximately one-tenth of
the boundary layer thickness. It can be seen that this mismatch leads to a substantial
error in the interpolated velocity when the standard interpolation procedure is applied.
However, the error is almost completely removed when the interpolation locations and
donor parameter values are corrected for the mismatch. We remark that the mismatch,
and therefore the interpolation error, can also be removed by modifying the mappings
to follow the boundary exactly.



ASSEMBLING OVERLAPPING GRIDS 2021

7. Conclusions. A general purpose algorithm for assembling two-dimensional
overlapping grid systems has been described. The method produces a grid with as
little overlap as possible, both for implicit and explicit interpolation. It also compen-
sates the interpolation data for the mismatch that can occur when a boundary of the
computational domain is represented by several overlapping component grids. If the
overlap between the components is insufficient, the algorithm reports the inconsistent
grid points to the user, to facilitate an improvement of the input. The algorithm has
been implemented in the code Xcog, which is distributed free of charge.

The extension to three dimensions is under way and a preliminary version of the
algorithm was presented by Malmliden and Petersson [7]. To perform the hole-cutting,
the global boundary could be represented by a surface triangulation for each part of
the surface, and it would be possible to determine if a point is inside or outside of the
computational domain by using the three-dimensional version of the ray method. The
specification of the external part of a mixed physical/external side of a component
grid would also have to be generalized. This would, for instance, be necessary to
handle intersecting surfaces, such as a wing-fuselage configuration. These issues are
discussed by Petersson [13].

Acknowledgments. I thank the people who patiently tested Xcog during its de-
velopment. They made valuable suggestions for improvements and located bugs and
weaknesses in previous versions of the code. These people include: Per Hammarlund;
Johan Malmliden; Lotta, Fredrik, and Pelle Olsson; Olof Runborg; Björn Sjögreen;
Jon Tegnèr; and Jacob Yström. I would also like to thank David Brown, Geoff
Chesshire, Bill Henshaw, and Heinz-Otto Kreiss for initiating my interest in over-
lapping grids and sharing their thorough knowledge on the subject. Finally, I thank
three anonymous referees for pointing out shortcomings in the original manuscript.

REFERENCES

[1] J. A. Benek, P. G. Buning, and J. L. Steger, A 3-D Chimera Grid Embedding Technique,
AIAA paper 85–1523, American Institute of Aeronautics and Astronautics, Reston, VA,
1985, pp. 322–331.

[2] J. A. Benek, J. L. Steger, and F. C. Dougherty, A Flexible Grid Embedding Technique
with Application to the Euler Equations, AIAA paper 83–1944, American Institute of
Aeronautics and Astronautics, Reston, VA, 1983, pp. 373–382.

[3] D. L. Brown, G. Chesshire, and W. D. Henshaw, Getting started with CMPGRD. Intro-
ductory User’s Guide and Reference Manual, Tech. report LA–UR 90-3729, Los Alamos
National Laboratory, Los Alamos, NM, 1989.

[4] G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial
differential equations, J. Comput. Phys., 90 (1990), pp. 1–64.

[5] W. D. Henshaw, Ogen: An Overlapping Grid Generator for Overture, Tech. report LA-UR
96-3466, Los Alamos National Laboratory, Los Alamos, NM, 1996.

[6] B. Kreiss, Construction of a curvilinear grid, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 270–
279.

[7] J. F. Malmliden and N. A. Petersson, A demonstration of the 3–D overlapping grid code
CHALMESH, in Proceedings of the 3rd Symposium on Overset Composite Grid and So-
lution Technology, Los Alamos National Laboratory, 1996.

[8] R. C. Maple and D. M. Belk, A new approach to domain decomposition: The Beggar code,
in Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, N. P.
Weatherill, ed., Pine Ridge Press, 1994, pp. 305–314.

[9] R. L. Meakin, A New Method for Establishing Intergrid Communication Among Systems of
Overset Grids, AIAA paper, 91–1586–CP, American Institute of Aeronautics and Astro-
nautics, Reston, VA, 1991.

[10] M. S. Milgram, Does a point lie inside a polygon?, J. Comput. Phys., 84 (1989), pp. 134–144.



2022 N. ANDERS PETERSSON

[11] R. W. Noack and D. M. Belk, Improved interpolation for viscous overset grids, in Proceedings
of the 3rd Symposium on Overset Composite Grid and Solution Technology, Los Alamos
National Laboratory, Los Alamos, NM, 1996.

[12] S. J. Parks, P. G. Buning, J. L. Steger, and W. M. Chan, Collar Grids for Intersecting
Geometric Components within the Chimera Overlapped Grid Scheme, AIAA paper 91–
1587–CP, American Institute of Aeronautics and Astronautics, Reston, VA, 1991.

[13] N. A. Petersson, Hole-cutting for 3–D overlapping grids, SIAM J. Sci. Comput., to appear.
[14] N. A. Petersson, User’s Guide to Xcog Version 2.0, Tech. report CHA/NAV/R-97/0048, Hy-

dromechanics Division, Naval Arch. and Ocean Eng., Chalmers Univ. of Tech., Gothenburg,
Sweden, 1997. Also at http://www.na.chalmers.se/̃ andersp/xcog/xcog.html.

[15] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[16] H. Schlichting, Boundary Layer Theory, 7th ed., McGraw–Hill, New York, 1979.
[17] N. E. Suhs, Tutorial: PEGSUS version 4.0, in Proceedings of the 2nd Symposium on Overset

Composite Grid and Solution Technology, American Institute of Aeronautics and Astro-
nautics, Reston, VA, 1994.

[18] C.-S. Yih, Fluid Mechanics, West River Press, Ann Arbor, MI, 1979.


